Year &	Course	Course Name: Fluidization	No. of	L	T&PS	P
Sem:E4S1	Code:	Engineering	Credits: 4	2	2	0
	CH4604					

UNIT I: Introduction: The phenomenon of fluidization; liquid like behavior of a fluidized bed; Comparison with other contacting methods; Advantages and disadvantages of fluidized beds. **Industrial applications of fluidized beds:** Coal gasification; gasoline from other petroleum fractions; Gasoline from natural and synthesis gases; Heat exchange; Coating of metal objects with plastics; Drying of solids; Synthesis of phthalic anhydride; Acrylonitrile; Polymerization of olefins; FCCU; Fluidized combustion of coal; incineration of solid waste; Activation of carbon; gasification of waste; bio-fluidization.

UNIT II: Fluidization and mapping of regimes: Minimum fluidization velocity; Pressure drop vs. velocity diagram; effect of temperature and pressure on fluidization; Geldart classification of particles; terminal velocity of particles, Transport disengaging height; turbulent fluidization; pneumatic transport of solids; fast fluidization; solid circulation systems; Voidage diagram; Mapping of regimes of fluidization.

UNIT III: Bubbles in dense bed: Single rising bubbles; Davidson model for gas flow at bubbles; Evaluation of models for gas flow at bubbles. **Bubbling Fluidized beds:** Experimental findings; Estimation of bed Voidages; Physical models: simple two phase model; K-L model.

UNIT IV: High velocity Fluidization: Turbulent fluidized bed; Fast fluidization pressure drop in turbulent and fast fluidization. **Solids Movement, Mixing, Segregation and staging:** Vertical movement of solids; Horizontal movement of solids; Staging of fluidized beds.

UNIT V: Gas Dispersion and Gas interchange in Bubbling Beds: Dispersion of gas in beds; Gas interchange between bubble and emulsion; Estimation of gas interchange coefficients. **Particle to Gas Mass Transfer:** Experimental interpolation of mass transfer coefficients; Heat transfer; Experimental heat transfer from the bubbling bed model.

References/Text Books:

- 1. Fluidization Engineering by Kunil, Diazo and Octave Levenspiel, John Weiley & Sons Inc, Newyork, 1969.
- 2. Fluidazation Engineering by J.R. Howard, Adam Heilgar.

Lecture Plan: Unit-I & -II syllabus for MID-I, Unit-III & -IV syllabus for MID-II and Unit-V & -VI syllabus for MID-III examinations.

Video Lectures (Web Links):

- 1.
- 2.

Study Materials (Web Links):

- 1.
- 2.